Matisse® Python
Programmer’s Guide

January 2017

MATISSE Python Programmer’s Guide
Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Introductiont it it 5

Scopeof ThisDocument i 5
Before Reading This Document. 5
Before Runningthe Examples i 5
Connectionand Transaction 7
Buildingthe Examples 7
Read Write Transaction i e 7
Read-Only ACCESS oot 8
VErSioN ACCESS . . ot vttt e e 8
SpecificOptions 9
More about MtDatabase. 11
Working with Objectsand Values 12
Running the Exampleson Objects. 12
Creating Objects e e 12
Listing Objectso 14
Deleting Objects. 15
Comparing Objects 16
Running the ExamplesonValues 16
Setting and Getting Values 16
Removing Values. 18
Streaming Values. 18
Retrieving an Object fromits Oid 19
Working with Relationships 20
Running the Examples on Relationships 20
Setting and Getting Relationship Elements 20
Adding and Removing Relationship Elements. 21
Listing Relationship Elements 21
Counting Relationship Elements 22
Working withIndexes i, 23
Running the ExamplesonIndexes 23
INdeX LOOKUD oo 23
Index Lookup Count. 24
Index Entries Count 24
Working with Entry-Point Dictionaries 25
Running the Examples on Dictionaries 25
Entry-Point Dictionary Lookup 25
Entry-Point Dictionary Lookup Count. 26
Working with SQL it 27
Running the Exampleson SQL 27
Executinga SQL Statement. 27

Creating Objects i e 28

Updating Objects 28

Retrieving Values 29
Retrieving Objects from a SELECT statement. 30
Retrieving Objects from a Block Statement 31
Executing DDL Statements 32
Executing SQL Methods. 33
Deleting Objectst 36
8 Working with Class Reflection 37
Running the Examples on Reflection 37
Creating Objects. e 37
Listing Objectso 38
Workingwith Indexes 39
Working with Entry Point Dictionaries. 40
Discovering Object Properties 41
Adding Classes.o 42
Deleting Objects 42
Removing Classest 43
9 Working with DatabaseEvents 44
Runningthe Events Example 44
Events Subscription 44
Events Notification 45
More about MtEvent. 46
10 Handling Object Factorieso, 47
Connectionwith Factory. 47
Creating your ObjectFactory 47
11 Building your Application 50
Discovering the Matisse PythonClasses 50
Generating Stub Classes 50
Extending the generated Stub Classes 50
Generated Public Methods 51

4 MATISSE Python Programmer’s Guide

Matisse Python Programmer’s Guide

1 Introduction

Scope of This Document

This document is intended to help Python programmers learn the aspects of Matisse design and
programming that are unique to the Matisse Python binding.

Aspects of Matisse programming that the Python binding shares with other interfaces, such as basic
concepts and schema design, are covered in Getting Started with Matisse.

Future releases of this document will add more advanced topics. If there is anything you would like to see
added, or if you have any questions about or corrections to this document, please send e-mail to

support@matisse.comn.

Before Reading This Document

Throughout this document, we presume that you already know the basics of Python programming and
either relational or object-oriented database design, and that you have read the relevant sections of
Getting Started with Matisse.

Before Running the Examples

Before running the following examples, you must do the following:
* Install Matisse 9.0.0 or later.

* Install the Python version 2.7 or later for your operating system (a free download from
www.python. org).

* Download and extract the Matisse Python binding source code and sample code from the Matisse
Web site:

http://www.matisse.com/developers/documentation/

The sample code files are grouped in subdirectories by chapter number. For example, the code
snippets from the following chapter are in the chap 2 directory.

* Build the Matisse Python binding from the source code. Follow the building instructions as detailed
in the BUILD file.

» Create and initialize a database. You can simply start the Matisse Enterprise Manager, select the
database ‘example’ and right click on ‘Re-Initialize’.

* From a Unix shell prompt or on MS Windows from a ‘Command Prompt’ window, change to the
chap_x subdirectory in the directory where you installed the examples.

Introduction 5

Matisse Python Programmer’s Guide

« Ifapplicable, load the ODL file into the database. From the Enterprise Manager, select the database
‘example’ and right click on ‘Schema->Import ODL Schema’. For example you may import
chap 3/objects.odl for the Chapter 3 demo.

* Generate Python class files:
mt sdl stubgen --lang python -f objects.odl
* Run the application. For instance in chap_3:

python -i createObjects.py

Introduction 6

Matisse Python Programmer’s Guide

2 Connection and Transaction

All interaction between client Python applications and Matisse databases takes place within the context of
transactions (either explicit or implicit) established by database connections, which are transient instances
of the Mt Database class. Once the connection is established, your Python application may interact with
the database using the schema-specific methods generated by mt sd1. The following sample code shows
a variety of ways of connecting with a Matisse database.

Note that in this chapter there is no ODL file as you do not need to create an application schema.

Building the Examples

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the chap 2 directory in your installation (under examples).

3. Launch the application:

Windows:
python -i connect.py

UNIX:
python -i connect.py

Read Write Transaction

The following code connects to a database, starts a transaction, commits the transaction, and closes the
connection:

try:
db = MtDatabase (dbhost,dbname,MtDynamicObjectFactory())
db.open ()
db.startTransaction ()
print "Connection and read-write access to {}".format (str (db))
db.commit ()
db.rollback()

db.close ()

except MtException as mtex:
print "MtException: " + str (mtex)
code, msg = mtex
print "MtException.code: " + str (code)
print "MtException.message: " + msg

1. Launch the application:

Windows:
python -i connect.py

UNIX:
python -i connect.py

Connection and Transaction 7

Matisse Python Programmer’s Guide

Read-Only Access

The following code connects to a database in read-only mode, suitable for reports:

try:

db = MtDatabase (dbhost, dbname,MtDynamicObjectFactory())
db.open ()
db.startVersionAccess ()
print "Connection and read-only access to {}".format (str(db))
db.endVersionAccess ()
db.close ()

except MtException as mtex:
print "MtException error:"
print mtex

1. Launch the application:

Windows:
python -i versionConnect.py

UNIX:
python -i versionConnect.py

Version Access

The following code illustrates methods of accessing various versions of a database.

def listVersions (db) :
for ver in db.versionIterator():
vertime = db.getVersionFromName (ver)
print "- {} ({})".format (ver,vertime)

def removeVersions (db) :
itr = db.versionIterator ()
for ver in itr:
vertime = db.getVersionFromName (ver)
print "- {} ({})".format (ver,vertime)
db.removeVersion (ver)

def versionNavigation (dbhost,dbname) :
print "Matisse Python Version {}.{}.{}.{}\n".format (MtDatabase.getMajorVersion(),
MtDatabase.getMinorVersion (),
MtDatabase.getReleaseVersion (),
MtDatabase.getPatchVersion())

try:
db = MtDatabase (dbhost, dbname,MtDynamicObjectFactory())
db.open ()
print "Current version: {}\n".format (db.getCurrentVersion())

db.startTransaction ()

print "Version list before regular commit:"
listVersions (db)

db.commit ()

Connection and Transaction 8

Matisse Python Programmer’s Guide

db.startTransaction ()

print "Version list after regular commit:"
listVersions (db)

versionName = db.commit ("mysnapshot-")

db.startVersionAccess ()

print "Version list after named commit:"
listVersions (db)

db.endVersionAccess ()

db.startVersionAccess (versionName)
print "Successful access to version: {}".format (versionName)
db.endVersionAccess ()

db.startTransaction ()

print "Remove all versions:"
removeVersions (db)
db.commit ()

db.close ()

except MtException as mtex:
print "MtException error:"
print mtex

1. Launch the application:

Windows:
python -i versionNavigation.py

UNIX:
python -i versionNavigation.py

Specific Options

This example shows how to enable the local client-server memory transport and to set or read various
connection options and states.

def startAccess (db,readonly) :
if readonly:
db.startVersionAccess ()
print "read-only access to {}".format (str(db))
else:
db.startTransaction ()
print "read-write access to {}".format (str(db))

def endAccess (db) :

if db.isVersionAccessInProgress() :
db.endVersionAccess ()
print "version access to {} ended".format (str(db))

elif db.isTransactionInProgress() :
db.commit ()
print "transaction on {} committed".format (str (db))

else:
print "No transaction nor version access in progress for {}".format (str(db))

Connection and Transaction 9

Matisse Python Programmer’s Guide

def isReadOnlyAccess (db) :
return (db.getOption (MtDatabase.DATA ACCESS MODE) == MtDatabase.DATA READONLY)

def setAccessMode (db, mode) :
if mode == "T":
db.setOption(MtDatabase.DATA_ACCESS_MODE, MtDatabase.DATA MODIFICATION)

print "DATA MODIFICATION (read-write transaction) mode"

elif mode == "V":
db.setOption (MtDatabase.DATA ACCESS MODE, MtDatabase.DATA READONLY)

print "DATA READONLY (version) mode"

elif mode == "3":
db.setOption(MtDatabase.DATA_ACCESS_MODE, MtDatabase.DATA DEFINITION)

print "DATA DEFINITION (schema definition) mode"

else:
print "unknown mode"

def advancedConnect (dbhost, dbname, mode) :
print "Matisse Python Version {}.{}.{}.{}\n".format (MtDatabase.getMajorVersion(),
MtDatabase.getMinorVersion (),
MtDatabase.getReleaseVersion(),
MtDatabase.getPatchVersion())

try:
db = MtDatabase (dbhost, dbname,MtDynamicObjectFactory())
db.open ()

if db.isConnectionOpen() :
setAccessMode (db, mode)

startAccess (db, isReadOnlyAccess (db))
print "\ndo something...\n"
endAccess (db)

print "Test Completed"

db.close()

except MtException as mtex:
print "MtException error:"
print mtex

1. Launch the application:

Windows:
python -i advancedConnect.py

UNIX:
python -i advancedConnect.py

Connection and Transaction 10

Matisse Python Programmer’s Guide

More about MtDatabase

As illustrated by the previous sections, the Mt Database class provides all the methods for database
connections and transactions. The reference documentation for the MtDatabase class is included in the
Matisse Python Binding API documentation located from the Matisse Python binding installation root

directory in docs/python/api/matisse.html.

Connection and Transaction 11

Matisse Python Programmer’s Guide

3 Working with Objects and Values

This chapter explains how to manipulate object with the object interface of the Matisse Python binding.
The object interface allows you to directly retrieve objects from the Matisse database without Object-
Relational mapping, navigate from one object to another through the relationship defined between them,
and update properties of objects without writing SQL statements.

The object interface can be used with Matisse Python SQL interface as well. For example, you can
retrieve objects with SQL, then use the object interface to navigate to other objects from these objects, or
update properties of these objects using the accessor methods defined on these classes.

Running the Examples on Objects

This sample program creates objects from 2 classes (Person and Employee), lists all person objects
(which includes both objects, since Employee is a subclass of person), deletes objects, then lists all
Person objects again to show the deletion. Note that because FirstName and LastName are not nullable,
they must be set when creating an object.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the chap_3 directory in your installation (under examples).

3. Load objects.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select chap 3/objects.odl for this demo.

4. Generate Python class files:

mt sdl stubgen --lang python -f objects.odl

Creating Objects

This section illustrates the creation of objects. The stubclass provides a default constructor which is the
base factory for creating persistent objects.

@staticmethod
def createPerson (db) :
Default constructor provided as an example.
You may delete this constructor or modify it to suit your needs. If you
modify it, please revise this comment accordingly.
@param MtDatabase db a database
@return Person a new instance of Person

return Person (Person.getClass (db))
You can also use the default constructor defined on the Mtobject class.

def init (self, entry, mtdb = None):

With a class object parameter, creates a new persistent Matisse instance.
This constructor is generally used only by generated stubs.

Working with Objects and Values 12

Matisse Python Programmer’s Guide

With entry as an int, constructs a MtObject bound to an existing object.
This constructor is generally used for internal purposes only.

@param MtClass cls the class to instantiate
@param int mtOid an existing object ID; no check is performed on the OID's validity
@param MtDatabase db the object's database
if isinstance(entry, MtClass):
self.mtoid = matisse py.create object (entry.getMtDatabase () .getHandle(),
entry.getMtOid())
self.mtdb = entry.getMtDatabase ()
else:
self.mtoid = int (entry)
self.mtdb = mtdb

Create a new Person object (instance of class Person)
use the dynamic object factory

= Person.createPerson (db)

.setFirstName ("John")

.setLastName ("Smith")

.setAge (42)

'O 'O 'O 'O #* #F

= PostalAddress (PostalAddress.getClass (db))
.setCity ("Portland")

.setPostalCode ("97201"™)

.setAddress (a)

print "Person John Smith created.\n"

T 0w

Create a new Employee object

= Employee (Employee.getClass (db))
.setFirstName ("Jane")

.setLastName ("Jones")

Age is nullable we can leave it unset
.setHireDate (date (2009,11,8))

numeric datatype
.setSalary(str(85000.00))

print "Employee Jane Jones created.\n"

® #= O HF= O O O H

1. Launch the application:

Windows:
python -i createObjects.py

UNIX:
python -i createObjects.py

If your application need to create a large number of objects all at once, we recommend that you use the
preallocate () method defined on MtDatabase which provide a substantial performance optimization.

db.startTransaction ()

Optimize the objects loading

Preallocate OIDs so objects can be created in the client workspace
without requesting any further information from the server
db.preallocate (DEFAULT ALLOCATOR CNT)

for i in range (SAMPLE OBJECT CNT) :

Working with Objects and Values 13

Matisse Python Programmer’s Guide

Create a new Employee object

e = Employee (Employee.getClass (db))

fname = fNameSample[random.randint (0,12345)
lname = 1NameSample[random.randint (0,12345)
e.setFirstName (fname)

e.setLastName (1lname)

hyear = (2000+ (random.randint (0,12345) % MAX SAMPLES))
e.setHireDate (date (hyear,6,1))

salary = salarySample[random.randint (0,12345) % MAX SAMPLES]
e.setSalary(salary)

MAX SAMPLES]
MAX SAMPLES]

o
°
o
°

a = PostalAddress (PostalAddress.getClass (db))
addrIdx = random.randint (0,12345) % MAX SAMPLES
a.setCity(addressSample[addrIdx] [0])
a.setPostalCode (addressSample[addrIdx] [1])
e.setAddress (a)

print "Employee {} {} {} salary={} hdate={} created.".format ((i+1), fname, lname,
e.getSalary(),
e.getHireDate())
if (i % OBJECT PER TRAN CNT == 0):
db.commit ()
db.startTransaction ()

check the remaining number of preallocated objects.
if (db.numPreallocated() < 2):
db.preallocate (DEFAULT ALLOCATOR_CNT)

createion completed - commit last transaction
if (db.isTransactionInProgress()) :
db.commit ()

1. Launch the application:

Windows:
python -i loadObjects.py

UNIX:
python -i loadObjects.py

Listing Objects

This section illustrates the enumeration of objects from a class. The instanceIterator () static method
defined on a generated stubclass allows you to enumerate the instances of this class and its subclasses.
The getInstanceNumber () method returns the number of instances of this class.

List all Person objects

print str (Person.getInstanceNumber (db)) + " Person(s) in the database."

print str (PostalAddress.getInstanceNumber (db)) + " Address(s) in the database."
itr = Person.instanceIterator (db)

for x in itr:

location = "?27?2°?2"
if (x.getAddress () != None): location = x.getAddress().getCity()
print "- {} {} from {} is a {}".format (x.getFirstName (),
x.getLastName (),
location,

Working with Objects and Values 14

Matisse Python Programmer’s Guide

x.getMtClass () .getMtName ())

1. Launch the application:

Windows:
python -i listObjects.py

UNIX:
python -i listObjects.py

The ownInstanceTterator () static method allows you to enumerate the own instances of a class
(excluding its subclasses). The getownInstanceNumber () method returns the number of instances of a
class (excluding its subclasses).

List all Person objects
print str (Person.getOwnInstanceNumber (db)) + " Person(s) (excluding subclasses)

in the database."

itr = Person.ownlInstancelterator (db)
for x in itr:

location = "?2°?2°?2"
if (x.getAddress () != None): location = x.getAddress () .getCity()
print "- {} {} from {} is a {}".format (x.getFirstName (),
x.getLastName (),
location,

x.getMtClass () .getMtName ())

1. Launch the application:

Windows:
python -i listOwnInstances.py

UNIX:
python -i listOwnInstances.py

Deleting Objects

This section illustrates the removal of objects. The remove () method delete an object.
Remove created objects

NOTE: does not remove the object sub-parts
p.remove ()

To remove an object and its sub-parts, you need to override the deepRemove () method in the stubclass to
meet your application needs. For example the implementation of deepRemove () in the Person class that
contains a reference to a Postaladdress object is as follows:

def deepRemove (self) :

Overrides MtObject.deepRemove () to remove the Address object if any.
pAddr = self.getAddress()
if (pAddr != None):

pAddr.deepRemove ()

Working with Objects and Values 15

Matisse Python Programmer’s Guide

super (Person, self) .deepRemove ()

p .deepRemove ()
1. Launch the application:

Windows:
python -i deleteObjects.py

UNIX:
python -i deleteObjects.py

The removeallInstances () method defined on Mtclass delete all the instances of a class.
Person.getClass (db) .removeAllInstances ()
1. Launch the application:

Windows:
python -i deleteAllObjects.py

UNIX:
python -i deleteAllObjects.py

Comparing Objects

This section illustrates how to compare objects. Persistent objects must be compared with the == method.
You can’t compare persistent object with the ‘is’ operator.

if (pl == p2):
print "Same objects"

Running the Examples on Values

This example shows how to get and set values for various Matisse data types including Null values, and
how to check if a property of an object is a Null value or not.

This example uses the database created for objects Example. It creates objects, then manipulates its
values in various ways.

Setting and Getting Values

This section illustrates the set, update and read object property values. The stubclass provides a set and a
get method for each property defined in the class.

Create a new Employee object

= Employee.createEmployee (db)

.setComment ("FirstName, LastName, Age, HireDate & Salary Set")
.setFirstName ("John")

® ® O FF

Working with Objects and Values 16

Matisse Python Programmer’s Guide

e.setLastName ("Jones")

Setting numbers
Age is nullable we can leave it unset
e.setAge (42)

2

S

Setting Date (use date and datetime for Date and Timestamp)
.setHireDate (date (2009,11,8))

(0]

Setting Numeric (int, double or string)
numeric datatype is managed as string
since not since not native to python
.setSalary ("85000.00")
.setSalary(85000.00)

.setSalary(85000)

® ® O HH H H*

print "Setting Age to null..."
e.setNull (Employee.getAgeAttribute (db))

1. Launch the application:

Windows:
python -i setObjectValues.py

UNIX:
python -i setObjectValues.py

Getting String values

print "Comment: " + str(e.getComment())

print "- {} {} is a {}".format (e.getFirstName (),
e.getLastName (),
e.getMtClass () .getMtName ())

suppresses output if no value set

if (not e.isAgeNull()):

print " {} years old".format (e.getAge())
Getting number values
print " Number of dependents: " + str(e.getDependents())
Getting numeric values - returned as a string
print " Salary: " + str(e.getSalary())
Getting date values - returned as a date
print " Hiring Date: " + str(e.getHireDate())

1. Launch the application:

Windows:
python -i getObjectValues.py

UNIX:
python -i getObjectValues.py

Working with Objects and Values

17

Matisse Python Programmer’s Guide

Removing Values

This section illustrates the removal of object property values. Removing the value of an attribute will
return the attribute to its default value.

Removing value returns attribute to default
e.removeAge ()

suppresses output if no value set
if (not e.isAgeNull()):
print " {} years old".format (e.getAge())
else:
if (e.isAgeDefaultValue()):
print " Age: null (default value)"
else:
print " Age: null"

1. Launch the application:

Windows:
python -i removeObjectValues.py

UNIX:
python -i removeObjectValues.py

Streaming Values

This section illustrates the streaming of blob-type values (MT BYTES, MT AUDIO, MT IMAGE,

MT viIDEO). The stubclass provides streaming methods (setPhotoElements(), getPhotoElements ()) for
each blob-type property defined in the class. It also provides a method (getPhotoSize ()) to retrieve the
blob size without reading it.

Store Image using a buffer stream

print "Storing an image from a stream of fixed size buffer."
buf2 = ""

e.setPhotoElements (buf2, MtType.BEGIN OFFSET, 0, True)

f = open('matisse.gif', "rb")

buf2 = f.read(512)

while buf2 != "":
buflen = len (buf2)
e.setPhotoElements (buf2, MtType.CURRENT OFFSET, buflen, False)
buf2 = f.read(512)

f.close()
print "Image of {} bytes stored.".format (e.getPhotoSize())
print "Streaming an image out"

Getting blobs (save value of e.Photo as out.gif in the
program directory)

Working with Objects and Values 18

Matisse Python Programmer’s Guide

fo = open('imageout2.gif', "wb+")
bufZ2out = e.getPhotoElements (MtType.BEGIN OFFSET, 512)
while buf2out != "":

fo.write (buf2out)

if (len (buf2out) < 512): break

buf2out = e.getPhotoElements (MtType.CURRENT OFFSET, 512)

fo.close ()
1. Launch the application:

Windows:
python -i readWriteStreamingValues.py

UNIX:
python -i readWriteStreamingValues.py

Retrieving an Object from its Oid

This section illustrates a very commonly used feature in the binding. Using the Object Identifier (OID) is
very efficient for retrieving one object from the database. The example below illustrates how to view an
image stored into the database using the object Identifier to quickly retrieve the object.

db = MtDatabase (dbhost,dbname,MtDynamicObjectFactory())
db.open ()

db.startVersionAccess ()

print "Retrieve a Person object from its oid {}".format (photoid)
p = db.upcast (photoid)

db.endVersionAccess ()

db.close ()

Working with Objects and Values 19

Matisse Python Programmer’s Guide

4 Working with Relationships

One of the major advantages of the object interface of the Matisse Python binding is the ability to
navigate from one object to another through a relationship defined between them. Relationship navigation
is as easy as accessing an object property.

Running the Examples on Relationships

This example creates several objects, then manipulates the relationships among them in various ways.
1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the chap 4 directory (under examples).

3. Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select chap 4/examples.odl for this demo.

4. Generate Python class files:

mt sdl stubgen --lang python -f examples.odl

Setting and Getting Relationship Elements

This section illustrates the set, update and get object relationship values. The stubclass provides a set and
a get method for each relationship defined in the class.

ml = Manager.createManager (db)

Set a relationship

Need to report to someone since the relationship
cardinality minimum is set to 1
ml.setReportsTo (ml)

m2 = Manager.createManager (db)

Set a relationship

m2.setReportsTo (ml)

e = Employee.createEmployee (db)

Set a relationship
e.setReportsTo (m2)

Set a relationship
ml.setAssistant (e)
Set a relationship
m2.setAssistant (e)

cl = Person.createPerson (db)

c2 = Person.createPerson (db)

Working with Relationships 20

Matisse Python Programmer’s Guide

Set successors
children = (cl, c2)
m2.setChildren (children)

Get all successors
children = m2.getChildren ()

1. Launch the application:

Windows:
python -i setRelationships.py

UNIX:
python -i setRelationships.py

Adding and Removing Relationship Elements

This section illustrates the adding and removing of relationship elements. The stubclass provides a
append, a remove and a clear method for each relationship defined in the class.

c2 Person.createPerson (db)
c3 = Person.createPerson (db)

add one successor

m2 .appendChildren (c2)

add multiple successors
m2.appendChildren((c3,))

removing successors (this only breaks links, it does not
remove objects)

m2 .removeChildren((c2,))

removing one successor

m2 .removeChildren (c3)

clearing all successors (this only breaks links, it does
not remove objects)
m2.clearChildren ()

1. Launch the application:
Windows:
python -i addToRelationship.py
python -i removeFromRelationship.py
UNIX:

python -i addToRelationship.py
python -i removeFromRelationship.py

Listing Relationship Elements

This section illustrates the listing of relationship elements for one-to-many relationships. The stubclass
provides an iterator method for each one-to-many relationship defined in the class.

Working with Relationships 21

Matisse Python Programmer’s Guide

Iterate when the relationship is large is always more efficient
for p in m2.childrenIterator():
print " " + p.getFirstName ()
1. Launch the application:

Windows:
python -i iterateRelationship.py

UNIX:
python -i iterateRelationship.py

Counting Relationship Elements

This section illustrates the counting of relationship elements for one-to-many relationships. The stubclass

provides an get size method for each one-to-many relationship defined in the class.

Get the relationship size without loading the Python objects

which is the fast way to get the size
childrenCnt = m2.getChildrenSize ()

print "Relationship size without loading:"

print "™ {} has {} kid(s).\n".format (m2.getFirstName (), childrenCnt)

an alternative to get the relationship size

but the Python objects are loaded before you can get the count

childrenCnt = len(m2.getChildren())

print "Relationship size from the loaded array:"

print "™ {} has {} kid(s).\n".format (m2.getFirstName (), childrenCnt)

1. Launch the application:

Windows:
python -i getRelationshipSize.py

UNIX:
python -i getRelationshipSize.py

Working with Relationships

22

Matisse Python Programmer’s Guide

5 Working with Indexes

While indexes are used mostly by the SQL query optimizer to speed up queries, the Matisse Python
binding also provides the index query APIs to look up objects based on a key value(s). The stubclass
defines both lookup methods and iterator methods for each index defined on the class.

Running the Examples on Indexes

Using the personName index, it checks whether the database contains an entry for a person matching the
specified name. The application will list the names in the database, indicate whether the specified name
was found, and return results within a sample range (defined in the source) using an iterator.

1.

2,

Follow the instructions in Before Running the Examples on page 5.
Change to the chap 5 directory (under examples).

Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select chap 5/examples.odl for this demo.

Generate Python class files:

mt sdl stubgen --lang python -f examples.odl

Index Lookup

This section illustrates retrieving objects from an index. The stubclass provides a lookup and a iterator
method for each index defined on the class.

// the lookup function returns null to represent no match
found = Person.lookupPersonName (db, lastName, firstName)

Launch the application:

Windows:
python -i lookupObjects.py

UNIX:
python -i lookupObjects.py

open an iterator for a specific range

fromFirstName = "Fred"
toFirstName = "John"

fromLastName = "Jones"
toLastName = "Murray"

print "\nLookup from \"{} {}\" to \"{}

{}I\"".format (fromFirstName, fromLastName, toFirstName, toLastName)

itr = Person.personNamelterator (db, fromLastName, fromFirstName, tolLastName,

toFirstName)

Working with Indexes 23

Matisse Python Programmer’s Guide

print "\nFound with no class filter:"
for p in itr:
print " {} {}".format (p.getFirstName (), p.getlLastName ())

1. Launch the application:

Windows:
python -i iterateIndex.py

UNIX:
python -i iterateIndex.py

Index Lookup Count

This section illustrates retrieving the object count for a matching index key. The getobjectNumber()
method is defined on the Mt Index class.

Skey = array($lastName, S$firstName) ;
Scount = Person::getPersonNameIndex ($db)->getObjectNumber (Skey) ;
print "{Scount} objects retrieved\n";

1. Launch the application:

Windows:
python -i lookupObjectsCount.py

UNIX:
python -i lookupObjectsCount.py

Index Entries Count

This section illustrates retrieving the number of entries in an index. The get IndexEntriesNumber()
method is defined on the Mt Index class.

key = (lastName, firstName)
count = Person.getPersonNameIndex (db) .getObjectNumber (key)
print str(count) + " objects retrieved\n"

1. Launch the application:

Windows:
python -i countIndexEntries.py

UNIX:
python -i countIndexEntries.py

Working with Indexes 24

Matisse Python Programmer’s Guide

6 Working with Entry-Point Dictionaries

An entry-point dictionary is an indexing structure containing keywords derived from a value, which is
especially useful for full-text indexing. While the entry-point dictionary can be used with SQL query
using ENTRY POINT keyword, the object interface of the Matisse Python binding also provides APIs to
directly retrieve objects using the entry-point dictionaries.

Running the Examples on Dictionaries

Using the commentDict entry-point dictionary, the example retrieves the Person objects in the database
with comments fields containing a specified character string.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the chap 6 directory (under examples).

3. Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select chap 6/examples.odl for this demo.

4. Generate Python class files:

mt sdl stubgen --lang python -f examples.odl

Entry-Point Dictionary Lookup

This section illustrates retrieving objects from an entry-point dictionary. The stubclass provides access to
lookup methods and iterator methods for each entry-point dictionary defined on the class.

the lookup function returns null to represent no match
1f more than one match an exception is raised
found = Person.getCommentDictDictionary (db) .lookup (searchstring)

1. Launch the application:

Windows:
python -i lookupObjects.py

UNIX:
python -i lookupObjects.py
hits = 0

itr = Person.commentDictIterator (db, searchstring)
for p in itr:

print " {} {}".format (p.getFirstName (), p.getLastName ())
hits +=1
print "{} Person(s) with 'comment' containing '{}'\n".format (hits, searchstring)

1. Launch the application:

Working with Entry-Point Dictionaries 25

Matisse Python Programmer’s Guide

Windows:
python -i iterateEpDict.py

UNIX:
python -i iterateEpDict.py

Entry-Point Dictionary Lookup Count

This section illustrates retrieving the object count for a matching entry-point key. The
getObjectNumber() method is defined on the MtEntryPointDictionary class.

count = Person.getCommentDictDictionary (db) .getObjectNumber (searchstring)
print str(count) + " matching object(s) retrieved\n"

1. Launch the application:

Windows:
python -i lookupObjectsCount.py

UNIX:
python -i lookupObjectsCount.py

Working with Entry-Point Dictionaries 26

Matisse Python Programmer’s Guide

7 Working with SQL

Running the Examples on SQL

This sample program demonstrates how to manipulate objects via the Matisse Python SQL interface. It
creates objects (Person Employee and Manager) and it executes SELECT statements to retrieve objects.
It also shows how to create SQL methods and execute them.

1.

2,

Follow the instructions in Before Running the Examples on page 5.
Change to the soL directory in your installation (under examples).

Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select sq1/examples.odl for this demo.

Generate Python class files:

mt sdl stubgen --lang python -f examples.odl

Executing a SQL Statement

After you open a connection to a Matisse database, you can execute statements (i.e., SQL statements or
SQL methods) using a MtStatement object.You can create a statement object for a specific MtDatabase
object using the createStatement method.

You can create more specific statement objects for different purposes:

MtStatement - It is specifically used for the SQL statements where you don't need to pass any value
as a parameter

MtPreparedStatement - It is a subclass of the statement class. The main difference is that, unlike the
statement class, prepared statement is complied and optimized once and can be used multiple times
by setting different parameter values.

MtCallableStatement - It provides a way to call a stored procedure on the server from a Python
program. Callable statements also need to be prepared first, and then their parameters are set using
the set methods.

MtResultSet - It represents a table of data, which is usually generated by executing a statement that
queries the database. A ResultSet object maintains a cursor pointing to its current row of data.

NOTE: With the Matisse Python SQL interface you usually don’t need to use the
Python stub classes unless you want to retrieve objects from a SQL
statement or from the execution of a SQL method.

Working with SQL 27

Matisse Python Programmer’s Guide

Creating Objects

You can also create objects into the database without the Python stub classes. The following code

demonstrates how to create multiple objects of the same class using a prepared statement.
db.startTransaction ()
Create an instance of PreparedStatement
commandText = "INSERT INTO Person (FirstName, LastName, Age) VALUES
pstmt = db.prepareStatement (commandText)
Set parameters
pstmt.setString (1, "James")
pstmt.setString (2, "Watson")
pstmt.setInt (3, 75)
print "Executing: " + pstmt.getStmtText ()

Execute the INSERT statement
inserted = pstmt.executeUpdate ()

print "Inserted: " + str(inserted)

Set parameters for the next execution
pstmt.setString (1, "Elizabeth")
pstmt.setString (2, "Watson")
pstmt.setNull (3)

print "Executing: " + pstmt.getStmtText ()

Execute the INSERT statement with new parameters
inserted = pstmt.executeUpdate ()

print "Inserted: " + str(inserted)

Clean up
pstmt.close ()

db.commit ()

1. Launch the application:

Windows:
python -i insertObjects.py

UNIX:
python -i insertObjects.py

Updating Objects

(?

’

You can also create objects into the database without the Python stub classes. The following code

demonstrates how to create multiple objects of the same class using a prepared statement.

Working with SQL

28

Matisse Python Programmer’s Guide
db.startTransaction ()

Create an instance of Statement

stmt = db.createStatement ()

Set the relationship 'Spouse' between these two Person objects

commandText = "SELECT REF (p) FROM Person p WHERE FirstName = 'James' AND
LastName = 'Watson' INTO pl"

stmt .execute (commandText)

commandText = "UPDATE Person SET Spouse = pl WHERE FirstName = 'Elizabeth' AND
LastName = 'Watson'"

inserted = stmt.executeUpdate (commandText)

Clean up
pstmt.close ()

db.commit ()
1. Launch the application:

Windows:
python -i insertObjects.py

UNIX:
python -i insertObjects.py

Retrieving Values

You use the Resultset object, which is returned by the executeguery method, to retrieve values or
objects from the database. Use the next method combined with the appropriate getString, getInt, etc.
methods to access each row in the result.

The following code demonstrates how to retrieve string and integer values from a Resultset object after
executing a SELECT statement.

Create an instance of PreparedStatement
commandText = "SELECT FirstName, LastName, Spouse.FirstName AS Spouse, Age FROM
Person WHERE LastName = ? LIMIT 10"
pstmt = db.prepareStatement (commandText)

Set parameters
pstmt.setString (1, "Watson")

print "Executing: " + pstmt.getStmtText ()

Execute the SELECT statement and get a ResultSet
rset = pstmt.executeQuery ()

print "Total selected: " + str(rset.getTotalNumObjects())
print "Total qualified: " + str(rset.getTotalNumQualified())

Print column names
numberOfColumns = rset.getColumnCount ()

get the column names column indexes start from 1
for i in range (numberOfColumns) :

Working with SQL 29

Matisse Python Programmer’s Guide

sys.stdout.write("{:16s} ".format (rset.getColumnName (i+1)))
print("")
for i in range (numberOfColumns) :
sys.stdout.write("--———-------————- ")
print ("")

Read rows one by one
while rset.next () :
Get values for the first and second column
fname = rset.getString(1l)
lname = rset.getString(2)
sfname = rset.getString(3)
age = rset.getlInt(4)
The third column 'Age' can be null. Check if it is null or not first.
if rset.wasNull () :

age = "NULL"
Print the current row
print "{:16s} {:16s} {:16s} {}".format (fname, lname, sfname, age)

Clean up and close the database connection
rset.close ()
pstmt.close ()

1. Launch the application:

Windows:
python -i selectValues.py

UNIX:
python -i selectValues.py

Retrieving Objects from a SELECT statement

You can retrieve Python objects directly from the database without using the Object-Relational mapping
technique. This method eliminates the unnecessary complexity in your application, i.e., O/R mapping
layer, and improves your application performance and maintenance.

To retrieve objects, use REF in the select-list of the query statement and the getobject method returns
an object. The following code example shows how to retrieve Person objects from a ResultSet object.

Create an instance of PreparedStatement
commandText = "SELECT REF (p) FROM Person p WHERE LastName = 'Watson';"
pstmt = db.createStatement ()

print "Executing: " + commandText

Execute the SELECT statement and get a ResultSet
rset = pstmt.executeQuery (commandText)

print "Total selected: " + str(rset.getTotalNumObjects())

print "Total qualified: " + str(rset.getTotalNumQualified())

print "Total columns: " + str(rset.getColumnCount())

print " Object Class: FirstName: LastName: Spouse FirstName: Age:"

Working with SQL 30

Matisse Python Programmer’s Guide

Read rows one by one
while rset.next():
Get the Person object
p = rset.getObject (1)
Get object property values
clsnam = p.getMtClass () .getMtName ()

fname

p.getFirstName ()

lname = p.getLastName ()
sfname = p.getSpouse () .getFirstName ()
The third column 'Age' can be null. Check if it is null or not first.
if p.isAgeNull () :
age = "NULL"

else:

age = p.getAge ()
Print the current row
print "{:16s} {:16s} {:16s} {:17s} {}".format(clsnam, fname, lname, sfname,

age)

Clean up and close the database connection

rset.close ()
pstmt.close ()

1. Launch the application:

Windows:

python -i selectObjects.py

UNIX:

python -i selectObjects.py

Retrieving Objects from a Block Statement

You can also retrieve a collection of Python objects directly from the database by executing a SQL block

statement.

The getobject method defined on a MtcallableStatement is used to return one object as well as an
object collection. The following code example shows how to retrieve a collection of Person objects

from a MtCallableStatement.

Create an instance of CallStatement
commandText = "BEGIN\n"

commandText += "
commandText += "
commandText += "
commandText += "
INTO emp sel;\n"
commandText += "
mgr sel;\n"
commandText += "
commandText += "

DECLARE res SELECTION (Employee) ;\n"

DECLARE emp sel SELECTION (Employee) ;\n"

DECLARE mgr sel SELECTION (Manager) ;\n"

SELECT REF (p) FROM ONLY Employee p WHERE p.ReportsTo IS NULL

SELECT REF (p) FROM Manager p WHERE COUNT (p.Team) > 1 INTO

SET res = SELECTION (emp sel UNION mgr_ sel) ;\n"
RETURN res;\n"

commandText += "END";

stmt = db.prepareCall (commandText)

Working with SQL

31

Matisse Python Programmer’s Guide

print "Executing: " + stmt.getStmtText ()

Execute a block statement, and get the returned object selection
isRset = stmt.execute ()

Get Result Type

resultType = stmt.getResultType ()

if ((resultType == MtStatement.METHOD) or
(resultType == MtStatement.PROCEDURE)) :
CALL statement with a return value
returnType = stmt.getParamType (0)

if (MtType.SELECTION == returnType or
MtType.OID == returnType):

print "result Type: {} - return Type: {} - result Class Type:
{}".format (MtStatement.stmtTypeToSting (resultType),

MtType.toString (returnType),
stmt.getStmtInfo (MtStatement.STMT SELCLASS))
sel = stmt.getObject (0)

print "result Cnt: " + str(len(sel))

for e in sel:

print "{}: {} {} - Hiring Date: {}".format (e.getMtClass () .getMtName (),
e.getFirstName (),
e.getLastName (),
e.getHireDate ())

stmt.close ()

1. Launch the application:

Windows:
python -i insertObjects.py

UNIX:
python -i insertObjects.py

Executing DDL Statements

You can also create schema objects from a Python application via SQL.
Creating a Class

You can create schema objects using the executeUpdate Method as long as the transaction is started in
the DATA DEFINITION mode.

db.open ()

db.setOption(MtDatabase.DATA;ACCESS_MODE, MtDatabase.DATA_DEFINITION)
db.startTransaction ()

Execute the DDL statement

stmt = db.createStatement ()

stmt.executeUpdate ("CREATE CLASS Manager UNDER Employee (bonus INTEGER)")
stmt.close ()

Working with SQL 32

Matisse Python Programmer’s Guide

db.commit ()
db.close ()

Creating a SQL Method

Creating a schema object using the execute Method does not require to start a transaction. A transaction
will be automatically started in the DATA DEFINITION mode.

db.open ()
NOTE: no transaction or version access mode started
the query will auto-start the apropriate mode

stmt = db.createStatement ()

The first method returns the number of Person objects which have a specified last
name
commandText = \
"CREATE STATIC METHOD CountByLName (lname STRING) \n" + \
"RETURNS INTEGER\n" + \
"FOR Person\n" + \
"BEGIN\n" + \
" DECLARE cnt INTEGER;\n" + \
" SELECT COUNT (*) INTO cnt FROM Person WHERE LastName = lname;\n" + \
" RETURN cnt;\n" + \
"END; "
print "\ncreating...\n" + commandText
stmt .execute (commandText)
stmt.close ()
db.commit ()
db.close ()

1. Launch the application:

Windows:
python -i createSglMethod.py

UNIX:
python -i createSqglMethod.py

Executing SQL Methods

You can call a SQL method using the CALL syntax, i.e., simply passing the SQL method name followed
by its arguments as an SQL statement. You can also use the Callable Statement object, which allows you
to explicitly specify the method’s parameters.

Executing a Method returning a Value

The following program code shows how to call the SQL method CountByLName of the Person class.

Specify the stored method. we call a static method,
the name is consisted of class name and method name.
Use CALL syntax to call the method

commandText = "CALL Person::CountByLName (?);"

Working with SQL 33

Matisse Python Programmer’s Guide

Create an instance of CallableStatement
stmt = db.prepareCall (commandText)

Set parameters
stmt.setString(l, "Watson")

print "Executing:"
print stmt.getStmtText ()

Execute the stored method
stmt .execute ()

Get the returned value
count = stmt.getInt(0)

Print it
print str(count) + " objects found\n"

Clean up
stmt.close ()

1. Launch the application:

Windows:
python -i callSglMethodl.py

UNIX:
python -i callSglMethodl.py

Executing a Method returning an Object

The following program code shows how to call the SQL method FindByName of the Person class.

Specify the stored method. we call a static method,

the name is consisted of class name and method name.

Use CALL syntax to call the method

commandText = "CALL Person: :FindByName ('Watson', 'James');"

Create an instance of CallableStatement
stmt = db.prepareCall (commandText)

print "Executing:"
print stmt.getStmtText ()

Execute the stored method
stmt .execute ()

Get the returned value
p = stmt.getObject (0)

Print it
if (p != None):

print "Found: {} {}\n".format (p.getLastName (), p.getFirstName ())
else:

print "no matching object found\n"

Working with SQL 34

Matisse Python Programmer’s Guide

Clean up
stmt.close ()

1. Launch the application:

Windows:
python -i callSglMethod2.py

UNIX:
python -i callSglMethod2.py

Catching a Method Execution Error

The following program code shows how to retrieve the execution stack trace of a SQL method when an
error occurs.

try:
db = MtDatabase (dbhost, dbname,MtDynamicObjectFactory())
db.open ()

db.startVersionAccess ()

Specify the SQL method. Since we call a static method,
the name is consisted of class name and method name.

Use CALL syntax to call the method

commandText = "CALL Employee::GetAnEmployee () ;"

Create an instance of CallableStatement
stmt = db.prepareCall (commandText)

print "The test executes a method that produces a runtime error"
print "and shows how to get the error stack trace"

print "Executing:"
print stmt.getStmtText ()

Execute the stored method
stmt .execute ()

Get the returned value
p = stmt.getObject (0)
Print it
if (p != None):
print "Found: {} {}\n".format (p.getLastName (), p.getFirstName ())
else:

print "no matching object found\n"

Clean up
stmt.close ()

print "Done\n"
db.endVersionAccess ()

db.close ()

Working with SQL 35

Matisse Python Programmer’s Guide

except MtException as mtex:
stackTrace = stmt.getStmtInfo(MtStatement.STMT_ERRSTACK)
print "Execution Error in:\n" + stmt.getStmtText ()
print "Execution Stack Trace:\n" + stackTrace
code, msg = mtex

print "MtException.message:\n" + msg

1. Launch the application:

Windows:
python -i callSglMethod3.py

UNIX:
python -i callSglMethod3.py

Deleting Objects

You can delete objects from the database with a DELETE statement as follows:

db.startTransaction ()

stmt = db.createStatement ()

Delete all the instances of the Person Class
Execute the DELETE statement
result = stmt.executeUpdate ("DELETE FROM Person")

stype = MtStatement.stmtTypeToSting (stmt.getResultType ())
print "{} statement executed affecting {} objects in the

database.\n".format (stype, result)

Clean up
stmt.close ()

db.commit ()

1. Launch the application:

Windows:
python -i clearPersonObjects.py

UNIX:
python -i clearPersonObjects.py

Working with SQL 36

Matisse Python Programmer’s Guide

8 Working with Class Reflection

This section illustrates Matisse Reflection mechanism. This example shows how to manipulate persistent
objects without having to create the corresponding Python stubclass. It also presents how to discover all
the object properties.

Running the Examples on Reflection

This example creates several objects, then manipulates them to illustrate Matisse Reflection mechanism.
1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the reflection directory (under examples).

3. Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select reflection/examples.odl for this
demo.

Creating Objects

This example shows how to create persistent objects without the corresponding Python stubclass. The
static method get () defined on all Matisse Meta-Schema classes (i.e. MtClass, MtAttribute, etc.)
allows you to access to the schema descriptor necessary to create objects. Each object is an instance of
the Mtobject base class. The Mtobject class holds all the methods to update the object properties
(attribute and relationships (i.e. setstring (), setSuccessors (), etc.).

the MtCoreObjectFactory class provides a minimal object factory

well suited for applications using reflection to manipulate objects
db = MtDatabase (dbhost, dbname, MtCoreObjectFactory ())

db.open ()

db.startTransaction ()

print "Creating one Person...\n"

pCls = MtClass.get (db, "Person")

fnAtt MtAttribute.get (db, "FirstName", pCls)
1InAtt = MtAttribute.get (db, "LastName", pCls)
cgAtt = MtAttribute.get (db, "collegeGrad", pCls)

p = MtObject (pCls)

p.setString (fnAtt, "John")
p.setString (1lnAtt,"Smith")
p.setBoolean (cgAtt, False)

print "Creating one Employee...\n"

eCls = MtClass.get (db, "Employee")

hdAtt MtAttribute.get (db, "hireDate", eCls)
slAtt = MtAttribute.get (db, "salary", eCls)

e = MtObject (eCls)

e.setString (fnAtt, "James")
e.setString (lnAtt, "Roberts")

e.setDate (hdAtt, date(2010,1,6))

Working with Class Reflection 37

e.setN

Matisse Python Programmer’s Guide

umeric (slAtt, "5123.25")

e.setBoolean (cgAtt, True)

print
mCls =
tmRshp

.setsS

.setS

.setS
.setB

23 333 3 8

"Creating one Manager...\n"
MtClass.get (db, "Manager")
= MtRelationship.get (db, "team", mCls)

= MtObject (mCls)

tring (fnAtt, "Andy")
tring (1lnAtt, "Brown")

.setDate (hdAtt, date(2009,11,8))
.setNumeric (slAtt, "7421.25")

uccessors (tmRshp, (m, e))
oolean (cgAtt, True)

db.commit ()

db.clo

1. Launch the

Windows:
python -1

UNIX:
python -1

Listing O

se ()
application:
createObjects.py

createObjects.py

bjects

This example shows how to list persistent objects without the corresponding Python stubclass. The

instanceltera
on the class.

tor () method defined on the MtC1lass object allows you to access all instances defined

db.startVersionAccess ()

pCls =

fnAtt
1nAtt
CgAtt
print

itr =
for p

MtClass.get (db, "Person")

= MtAttribute.get (db, "FirstName", pCls)

= MtAttribute.get (db, "LastName", pCls)

= MtAttribute.get (db, "collegeGrad", pCls)

"\n {} Person(s) in the database.\n".format (pCls.getInstancesNumber ())

pCls.instancesIterator ()
in itr:

print "- cls={} oid={} - {} {} - collegeGrad={}\n".format (

p.getMtClass () .getMtName (),
p.getMtOid (),
p.getString (fnAtt),
p.getString (1lnAtt),
p.getBoolean (cgAtt))

db.endVersionAccess ()

1. Launch the

Windows:
python -1

application:

listObjects.py

Working with Class

Reflection 38

Matisse Python Programmer’s Guide

UNIX:
python -i listObjects.py

Working with Indexes

This example shows how to retrieve persistent objects from an index. The Mt Index class holds all the
methods retrieves objects from an index key.

db.startVersionAccess ()

pCls = MtClass.get (db, "Person")
fnAtt = MtAttribute.get (db, "FirstName", pCls)
1InAtt = MtAttribute.get (db, "LastName", pCls)

pIldx = MtIndex.get (db, "personName")
print "\n {} entries in the index.\n".format (pIdx.getIndexEntriesNumber ())

firstName = "Andy"
lastName = "Brown"
print "Looking for: {} {}\n".format (firstName, lastName)

lookup for the number of objects matching the key

key = (lastName, firstName)

count = pIdx.getObjectNumber (key)

print str(count) + " matching objects to be retrieved."

if (count > 1):
More than one matching object
Retrieve them with an iterator
for p in pIdx.iterator (key, key):
print " found {} {} OID={}".format (p.getString (fnAtt),
p.getString (1lnAtt),
p.getMtoid())
else:
At most 1 object
Retrieve the matching object with the lookup method
p = pldx.lookup (key)
if (p != None):
print " found {} {}".format (p.getString(fnAtt), p.getString(lnAtt))
else:
print " Nobody found"

db.endVersionAccess ()
1. Launch the application:

Windows:
python -i indexLookup.py

UNIX:
python -i indexLookup.py

Working with Class Reflection 39

Matisse Python Programmer’s Guide

Working with Entry Point Dictionaries

This example shows how to retrieve persistent objects from an Entry Point Dictionary. The
MtEntryPointDictionary class holds the methods to retrieve objects from a string key.

pCls = MtClass.get (db, "Person")

mCls = MtClass.get (db, "Manager")

fnAtt MtAttribute.get (db, "FirstName", pCls)
1nAtt MtAttribute.get (db, "LastName", pCls)
cgAtt = MtAttribute.get (db, "collegeGrad", pCls)

Get the EntryPointDictionary Descriptor object
cgEpd = MtEntryPointDictionary.get (db, "collegeGradDict")

collegeGrad = "true"
print "Looking for Persons with CollegeGrad={}:".format (collegeGrad)

cnt = cgEpd.getObjectNumber (collegeGrad)
print "{} matching objects to be retrieved.\n".format (cnt)

if cnt > 1:
More than one matching object
Retrieve them with an iterator
print "Looking up from an iterator:"
cgltr = cgEpd.iterator (collegeGrad)
for p in cgltr:
print " found OID={} {} {} collegeGrad={}\n".format (p.getMtOid(),
p.getString (fnAtt),
p.getString (1nAtt),
p.getBoolean (cgAtt))
print "Retrieving them all at once filtered by class:"
plst = cgEpd.lookupObjects (collegeGrad, mCls)
for p in plst:
print " found OID={} {} {} collegeGrad={}\n".format (p.getMtOid(),
p.getString (fnAtt),
p.getString (1nAtt),
p.getBoolean (cgAtt))
else:
At most 1 object
Retrieve the matching object with the lookup method
p = cgEpd.lookup (collegeGrad)
if (p != None):
print " found OID={} {} {} collegeGrad={}\n".format (p.getMtOid(),
p.getString (fnAtt),
p.getString (1lnAtt),
p.getBoolean (cgAtt))
else:
print " Nobody found\n"

1. Launch the application:

Windows:
python -i entryPointLookup.py

UNIX:

Working with Class Reflection 40

Matisse Python Programmer’s Guide

python -i entryPointLookup.py

Discovering Object Properties

This example shows how to list the properties directly from an object. The Mtobject class holds the

attributesIterator () HKﬁhOd,relationshipslterator() method and
inverseRelationshipsIterator () method which enumerate the object properties.

pCls = MtClass.get (db, "Person")

print "\n {} Person(s) in the database.\n".format (pCls.getInstancesNumber ())

itr = pCls.instancesIterator ()
for p in itr:

print "- cls={} oid={}".format (p.getMtClass () .getMtName (), p.getMtOid())

print " Attributes:"

for att in p.attributesIterator():
propType = att.getMtType ()
valType = p.getType (att)

fmtval = ""
if valType == MtType.NULL:
fmtval = " (null)"

elif valType == MtType.DATE:
fmtVal = p.getDate (att)

elif valType == MtType.NUMERIC:
fmtVal = p.getNumeric(att)
else:

fmtVal = p.getValue (att) .value

print " - att={} att-type={} - val-type={} value={}".format (

att.getMtName ()

r
MtType.toString (propType),
MtType.toString(valType),

print " Relationships:"
for rel in p.relationshipsIterator():

fmtval)

print " - rel={}: {} element(s)".format (rel.getMtName (),

p.getSuccessorSize (rel))
print " Inverse Relationships:"
for rel in p.inverseRelationshipsIterator():

print " - rel={}: {} element(s)".format (rel.getMtName (),

p.getSuccessorSize (rel))
print "Done\n"
1. \Launch the application:

Windows:
python -i listObjectProperties.py

UNIX:
python -i listObjectProperties.py

Working with Class Reflection

41

Matisse Python Programmer’s Guide

Adding Classes

This example shows how to add a new class to the database schema. The connection needs to be open in
the DDL (MtDatabase.DATA DEFINITION) mode. Then you need to create instances of MtClass,
MtAttribute and MtRelationship and connect them together.

$db = new \matisse\MtDatabase ($Shostname, $dbname, new MtCoreObjectFactory());

// open connection in DDL mode

$db->setOption (\matisse\MtDatabase: :DATA ACCESS MODE,
\matisse\MtDatabase::DATA_DEFINITION);

$db->open () ;

Sdb->startTransaction() ;

print "Creating 'PostalAddress' class and linking it to 'Person'...\n";

ScAtt = \matisse\reflect\MtAttribute::createAttribute ($db, "City",
\matisse\reflect\MtType: :STRING) ;

SpcAtt = \matisse\reflect\MtAttribute::createAttribute ($db, "PostalCode",

\matisse\reflect\MtType: : STRING) ;

SpaClass = \matisse\reflect\MtClass::createClass ($db, "PostalAddress", array(ScAtt,
SpcAtt), null);

$pClass = \matisse\reflect\MtClass::get($db, "Person");

$adRshp = \matisse\reflect\MtRelationship::createRelationship ($db, "Address",
$paClass, array (0, 1));

SpClass->addMtRelationship ($adRshp) ;

Sdb->commit () ;
Sdb->close () ;

1. Launch the application:

Windows:
python -i addClass.py

UNIX:
python -i addClass.py

Deleting Objects

This example shows how to delete persistent objects. The Mtobject class holds remove () and
deepRemove (). Note that on MtObject deepRemove () does not execute any cascading delete but only

CaHSremove(L
db.startTransaction ()

pCls = MtClass.get (db, "Person")
print "\n {} Person(s) in the database.\n".format (pCls.getInstancesNumber ())

itr = pCls.instancesIterator ()
for o in itr:

Working with Class Reflection 42

Matisse Python Programmer’s Guide

o .deepRemove ()

db.commit ()

1. Launch the application:

Windows:
python -i deleteObjects.py

UNIX:
python -i deleteObjects.py

Removing Classes

This example shows how to remove a class for the database schema. The deeprRemove () method defined
on MtClass will delete the class and its properties and indexes. The connection needs to be open in
MtDatabase.DATA DEFINITION mode.

db = MtDatabase (dbhost, dbname, MtCoreObjectFactory ())

open connection in DDL mode
db.setOption (MtDatabase.DATA ACCESS_MODE, MtDatabase.DATA DEFINITION)

db.open ()
db.startTransaction ()

paClass = MtClass.get(db, "PostalAddress")
paClass.deepRemove ()

db.commit ()

1. Launch the application:

Windows:
python -i removeClass.py

UNIX:
python -i removeClass.py

Working with Class Reflection 43

Matisse Python Programmer’s Guide

9 Working with Database Events

This section illustrates Matisse Event Notification mechanism. The sample application is divided in two
sections. The first section is event selection and notification. The second section is event registration and
event handling.

Running the Events Example

This example creates several events, then manipulates them to illustrate the Event Notification
mechanism.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the events directory (under examples).

3. Launch the application:
To run the example, you need to open 2 command line windows and run one command in each
windows.

Windows:
python -i subscribeEvents.py
python -i notifyEvents.py

UNIX:
python -i subscribeEvents.py
python -i notifyEvents.py

Events Subscription

This section illustrates event registration and event handling. Matisse provides the MtEvent class to
manage database events. You can subscribe up to 32 events (MtEvent .EVENT1 to MtEvent.EVENT32)
and then wait for the events to be triggered.

TEMPERATURE CHANGES EVT = MtEvent.EVENT1
RAINFALL CHANGES EVT = MtEvent.EVENT2
HIMIDITY CHANGES EVT = MtEvent.EVENT3
WINDSPEED CHANGES EVT = MtEvent.EVENT4

db = MtDatabase (dbhost,dbname,MtDynamicObjectFactory())
db.open ()

Create a subscriber Event
subscriber = MtEvent (db)

Subscribe to all 4 events
eventSet = TEMPERATURE CHANGES EVT | RAINFALL CHANGES EVT | HIMIDITY CHANGES EVT |
WINDSPEED CHANGES EVT

Subscribe
subscriber.subscribe (eventSet)

Working with Database Events 44

Matisse Python Programmer’s Guide

for i in range(20):
Wait 1000 ms for events to be triggered
return 0 if not event is triggered until the timeout is reached
print "wait 1 sec for event..."
triggeredEvents = subscriber.wait (1000)
if (triggeredEvents != 0):
print "Events (#{:d}) triggered with value
{:X}:\n".format (i, triggeredEvents)

if ((triggeredEvents & TEMPERATURE CHANGES EVT) == 0):
print "No "
print "Change in temperature\n"

if ((triggeredEvents & RAINFALL CHANGES EVT) == 0):
print "No "
print "Change in rain fall\n"

if ((triggeredEvents & HIMIDITY CHANGES EVT) == 0):
print "No "
print "Change in humidity\n"

if ((triggeredEvents & WINDSPEED CHANGES EVT) == 0):
print "No "
print "Change in wind speed\n"
else:

print "No Event received after 1 sec\n"

print "Unsubscribe to 4 Events\n"
Unsubscribe to all 4 events
subscriber.unsubscribe ()

Events Notification

This section illustrates event selection and notification.

TEMPERATURE CHANGES EVT = MtEvent.EVENT1
RAINFALL CHANGES EVT = MtEvent.EVENT2
HIMIDITY CHANGES EVT = MtEvent.EVENT3
WINDSPEED CHANGES EVT = MtEvent.EVENT4

db = MtDatabase (dbhost,dbname,MtDynamicObjectFactory())

db.open ()

Create a notifier Event

notifier = MtEvent (db)

wait a little

print "waiting 3 seconds one or more subscribers can be started ...\n"

sleep(3)

for i in range (MAX MEASURES) :
eventSet = 0

if (changeInTemperature(i)): eventSet |= TEMPERATURE CHANGES EVT
if (changeInRainfall(i)): eventSet |= RAINFALL CHANGES EVT

if (1 $ 2 == 0): eventSet |= HIMIDITY CHANGES EVT

if (1 $ 2 == 1): eventSet |= WINDSPEED CHANGES EVT

Working with Database Events 45

db.close ()

Matisse Python Programmer’s Guide

print "events {:X}".format (eventSet)
Notify of some events
notifier.notify (eventSet)

print "Events (#{}) posted:\n".format (i+1)

if ((eventSet & TEMPERATURE CHANGES EVT) > 0): print "Change in temperature\n"
if ((eventSet & RAINFALL CHANGES EVT) > 0): print "Change in rain fall\n"

if ((eventSet & HIMIDITY CHANGES EVT) > 0): print "Change in humidity\n"

if ((eventSet & WINDSPEED CHANGES EVT) > 0): print "Change in wind speed\n"

wait a little
print "waiting 1 sec ...\n"
sleep (1)

More about MtEvent

As illustrated by the previous sections, the MtEvent class provides all the methods for managing database
events. The reference documentation for the MtEvent class is included in the Matisse Python Binding
API documentation located from the Matisse installation root directory in
docs/python/api/matisse.html.

Working with Database Events 46

Matisse Python Programmer’s Guide

10 Handling Object Factories

The persistent objects retrieved from the database are automatically mapped to the most appropriate
Python class. The object factories are responsible for creating the Python objects with the expected class.

Connection with Factory

Using MtDynamicObjectFactory

The MtDynamicObjectFactory is the default objects which can create a Python from an object
retrieved from the database. In most cases, you use a Mt DynamicObjectFactory object.

db = MtDatabase (dbhost,dbname,MtDynamicObjectFactory())

Using MtCoreObijectFactory

This factory is the basic MtObject-based object factory. This factory is the most appropriate for
application which does use generated stubs. This factory is faster than the Mt DynamicObjectFactory
Object Factory since it doesn't use reflection to build objects.

db = MtDatabase (dbhost,dbname,MtCoreObjectFactory())

Creating your Object Factory

Implementing the MtObjectFactory interface

The MtObjectFactory interface describes the mechanism used by Mt Database to create the
appropriate Python object for each Matisse object. Implementing the MtObjectFactory interface
requires to define the getPythonClass () method which return Python class corresponding to a Matisse
Class Name, the getDatabaseClass () method which return the database class name from the Python
class name and the getObjectInstance () method which return a Python object based on an oid.

class MyAppObjectFactory (MtObjectFactory) :

A minimal object factory.

def getObjectInstance (self,db,mt0Oid) :

non

Implements MtObjectFactory.getObjectInstance.

@param MtDatabase db a database
@param int mtOid the OID of the Python object to create
@return Object the Python object represented by mt0id
if mtoid ==

return None
else:

return MtObject (mt0Oid, db)

Handling Object Factories 47

def

Matisse Python Programmer’s Guide

getPythonClass (self,mtClsName) :

Implements MtObjectFactory.getPythonClass.

@param string mtClsName a Matisse Class Name
@return string the Python MtObject full classname

return "MtObject"

def getDatabaseClass (self,pyClsName) :

Implements MtObjectFactory.getDatabaseClass.

@param string pyClsName a Python Class Name
@return string the Matisse full class name

return pyClsName

Implementing a Sub-Class of MtCoreObjectFactory

This MtCoreObjectFactory is a basic MtObject-based object factory which can be extended to
implement your own Object Factory.

class MyOwnObjectFactory (MtCoreObjectFactory) :

My Own Application object factory.

non

def

def

def

getObjectInstance (self,db,mt0Oid) :

Implements MtObjectFactory.getObjectInstance.

@param MtDatabase db a database
@param int mtOid the OID of the Python object to create
@return Object the Python object represented by mt0id
if self.isSchemaObject (db, mtOid)) :
return super (MyOwnObjectFactory, self).getObjectInstance (db, mtOid)
else:
create you onw object
myobject =
return myobject

getPythonClass (self,mtClsName) :

Implements MtObjectFactory.getPythonClass.

@param string mtClsName a Matisse Class Name
@return string the Python MtObject full classname

return mtClsName

getDatabaseClass (self,pyClsName) :

Returns the Matisse class name associated to the Python class stub

Handling Object Factories 48

@param string pyClsName
@return string

wnn

return pyClsName

Matisse Python Programmer’s Guide

a Python Class Name
the Matisse full class name

Handling Object Factories

49

Matisse Python Programmer’s Guide

11 Building your Application

This section describes the process for building an application from scratch with the Matisse Python
binding.

Discovering the Matisse Python Classes

The Matisse Python library is comprised of in 3 Python files:

1. matisse.py contains all the core classes defined in the matisse module. These classes manages the
database connection.

1. matisse_reflect.py contains all the core classes defined in the matisse_reflect module. These
classes manages the object factories. It also includes the Matisse meta-schema classes.

2. matisse_sql.py contains all the SQL-related classes defined in the matisse_sql module. These
classes manages the execution of al types of SQL statements.

The Matisse Python API documentation included in the delivery provides a detailed description of all the
classes and methods.

Generating Stub Classes

The Python binding relies on object-to-object mapping to access objects from the database. Matisse
mt_sdl utility allows you to generate the stub classes mapping your database schema classes. Generating
Python stub classes is a 2 steps process:

1. Design a database schema using ODL (Object Definition Language).

2. Generate the Python code from the ODL file:
mt sdl stubgen --lang python -f myschema.odl

A .py file will be created for each class defined in the database. When you update your database
schema later, load the updated schema into the database. Then, execute the mt_sd1 utility in the
directory where you first generated the class files, to update the files. Your own program codes
added to these stub class files will be preserved.

Extending the generated Stub Classes

You can add your own source code outside of the BEGIN and £ND markers produced in the generated stub
class.

// BEGIN Matisse SDL Generated Code
// DO NOT MODIFY UNTIL THE 'END of Matisse SDL Generated Code' MARK BELOW

// END of Matisse SDL Generated Code

Building your Application 50

Matisse Python Programmer’s Guide

Appendix A: Generated Public Methods

The following methods are generated automatically in the .py class files generated by mt sd1.

For schema classes

The following methods are created for each schema class. These are class methods (also called static
methods): that is, they apply to the class as a whole, not to individual instances of the class. These
examples are taken from person.

Count instances

Open an iterator

Sample
constructor

Sample toString

Get descriptor

Factory
constructor

For all attributes

getInstanceNumber (db)
getOwnInstanceNumber (db)

instancelterator (db)
ownInstancelterator (db)

createPerson (db)

getClass (db)

Returns an MtClass object. This method supports advanced Matisse programming
techniques such as dynamically modifying the schema.

__init (self, cls or oid, db=None)

This constructor is called by MtobjectFactory. Actually, the constructor is
inherited from MtObject

The following methods are created for each attribute. For example, if the ODL definition for class check
contains the attributes Date and Amount, the Check.Python file will contain the methods getDate and
getaAmount. These examples are taken from Person. firstName.

Get value

Set value
Remove value
Check Null value

Check Default
value

Get descriptor

getFirstName (self)
setFirstName (self,val)
removeFirstName (self)
isFirstNameNull (self)

isFirstNameDefault (self)

getFirstNameAttribute (db)

Returns an Mtattribute object. This method supports advanced Matisse
programming techniques such as dynamically modifying the schema.

Generated Public Methods

51

Matisse Python Programmer’s Guide

For list-type attributes only

The following methods are created for each list-type attribute. These examples are from pPerson.photo.
Get elements getPhotoElements (self, offset, len)
Set elements setPhotoElements (self, value, offset, len, discardAfter)

Count elements getPhotoSize (self)

For all relationships

The following methods are created for each relationship. These examples are from Person. spouse.
Clear successors clearSpouse (self)
Get descriptor getSpouseRelationship (db)

Returns an MtRelationship object. This method supports advanced Matisse
programming techniques such as dynamically modifying the schema.

For relationships where the maximum cardinality is 1

The following methods are created for each relationship with a maximum cardinality of 1. These
examples are from Manager.assistant.

Get successor getAssistant (self)

Set successor setAssistant(self, succ)

For relationships where the maximum cardinality is greater than 1

The following methods are created for each relationship with a maximum cardinality greater than 1.
These examples are from Manager . team.

Get successors getTeam(self)
Open an iterator teamIterator (self)
Count successors getTeamSize (self)
Set successors setTeam(self, succs)

Add successors Insert one successor before any existing successors:

prependTeam(self, succ)

Add one successor after any existing successors:

appendTeam(self, succ)

Add multiple successors after any existing successors:

appendTeam(self, succs)

Remove removeTeam(self, succ)
successors

Generated Public Methods 52

Matisse Python Programmer’s Guide

removeTeam (selfsuccs)

Remove specified successors.

For indexes

The following methods are created for every index defined for a database. These examples are for the
only index defined in the example, Person.personName.

LOOkup lookupPersonName (db, lastName, firstName)
Open an iterator personNamelterator (db, fromLastName, fromFirstName, toLastName,
toFirstName)
personNameIterator (db, fromLastName, fromFirstName, tolLastName,
toFirstName, filterClass, direction, numObjPerBuffer)
Get descriptor getPersonNameIndex (db)
Returns an Mt I1ndex object. This method supports advanced Matisse programming

techniques such as dynamically modifying the schema.

For entry-point dictionaries

The following methods are created for every entry-point dictionary defined for a database. These
examples are for the only dictionary defined in the example, Person.commentDict.

Lookup lookupCommentDict (db, value)

Open an iterator commentDictIterator (db, value)
commentDictIterator (db, value, filterClass, numObjPerBuffer)

Get descriptor getCommentDictDictionary (db)

Returns an MtEntryPointDictionary object. This method supports advanced
Matisse programming techniques such as dynamically modifying the schema.

Generated Public Methods 53

	Matisse® Python Programmer’s Guide
	1 Introduction
	Scope of This Document
	Before Reading This Document
	Before Running the Examples

	2 Connection and Transaction
	Building the Examples
	Read Write Transaction
	Read-Only Access
	Version Access
	Specific Options
	More about MtDatabase

	3 Working with Objects and Values
	Running the Examples on Objects
	Creating Objects
	Listing Objects
	Deleting Objects
	Comparing Objects
	Running the Examples on Values
	Setting and Getting Values
	Removing Values
	Streaming Values
	Retrieving an Object from its Oid

	4 Working with Relationships
	Running the Examples on Relationships
	Setting and Getting Relationship Elements
	Adding and Removing Relationship Elements
	Listing Relationship Elements
	Counting Relationship Elements

	5 Working with Indexes
	Running the Examples on Indexes
	Index Lookup
	Index Lookup Count
	Index Entries Count

	6 Working with Entry-Point Dictionaries
	Running the Examples on Dictionaries
	Entry-Point Dictionary Lookup
	Entry-Point Dictionary Lookup Count

	7 Working with SQL
	Running the Examples on SQL
	Executing a SQL Statement
	Creating Objects
	Updating Objects
	Retrieving Values
	Retrieving Objects from a SELECT statement
	Retrieving Objects from a Block Statement
	Executing DDL Statements
	Creating a Class
	Creating a SQL Method

	Executing SQL Methods
	Executing a Method returning a Value
	Executing a Method returning an Object
	Catching a Method Execution Error

	Deleting Objects

	8 Working with Class Reflection
	Running the Examples on Reflection
	Creating Objects
	Listing Objects
	Working with Indexes
	Working with Entry Point Dictionaries
	Discovering Object Properties
	Adding Classes
	Deleting Objects
	Removing Classes

	9 Working with Database Events
	Running the Events Example
	Events Subscription
	Events Notification
	More about MtEvent

	10 Handling Object Factories
	Connection with Factory
	Using MtDynamicObjectFactory
	Using MtCoreObjectFactory

	Creating your Object Factory
	Implementing the MtObjectFactory interface
	Implementing a Sub-Class of MtCoreObjectFactory

	11 Building your Application
	Discovering the Matisse Python Classes
	Generating Stub Classes
	Extending the generated Stub Classes

	Appendix A: Generated Public Methods
	For schema classes
	Count instances
	Open an iterator
	Sample constructor
	Sample toString
	Get descriptor
	Factory constructor

	For all attributes
	Get value
	Set value
	Remove value
	Check Null value
	Check Default value
	Get descriptor

	For list-type attributes only
	Get elements
	Set elements
	Count elements

	For all relationships
	Clear successors
	Get descriptor

	For relationships where the maximum cardinality is 1
	Get successor
	Set successor

	For relationships where the maximum cardinality is greater than 1
	Get successors
	Open an iterator
	Count successors
	Set successors
	Add successors
	Remove successors

	For indexes
	Lookup
	Open an iterator
	Get descriptor

	For entry-point dictionaries
	Lookup
	Open an iterator
	Get descriptor

